

# **Environmental Implications of Agricultural Development in Odisha State**

Suvangi Rath<sup>1\*</sup>, PrangyaParamita Sahoo<sup>2</sup>, Khitish Kumar Sarangi<sup>3</sup>,

Kalakada Kareemulla<sup>4</sup>

<sup>1</sup>MSc Scholar, Department of Agricultural Economics, College of Agriculture, OUAT, BBSR. <sup>2</sup>PhD Scholar, Department of Agricultural Economics, College of Agriculture, OUAT, BBSR. <sup>3</sup>Asst. Professor, Department of Agricultural Economics, College of Agriculture, OUAT, BBSR, <sup>4</sup>Professor and Principal Scientist, Agril.Economics, ICAR-NAARM.

\*Corresponding author: <a href="mailto:suvangi.rath@gmail.com">suvangi.rath@gmail.com</a>

#### Abstract

The state of Odisha is an agaraian one with agriculture and allied sector contributing about 20% of Net State Domestic Product (NSDP) in 2017-18 at 2011-12 prices and providing employment to more than 70% of the population either directly or indirectly. Agriculture is the mainstay of the economy and substance of life for the people of the state. The study includes both qualitative and quantitative techniques as it involves both observations and analysis. The study mainly focuses on the environmental implications of the input use on the development of the state. As environment plays a major role in the success and viability of any agricultural project taking into account the risks and uncertainties associated with them, we have here focused on the environmental-social impact indicators along with the extent of strain on environment viz. low, medium and high levels associated with the use of inputs and selected projects as well as the impact of the microclimate on the development of agriculture in the state thereby analyzing the future prospects and mitigation strategies for sustainable growth. The paper also analyses the positive and negative externalities of few agricultural projects in selected districts of Odisha that were undertaken for sustainable means of livelihood for the rural poor.

Keywords: Externalities, Livelihood, Environment, Agricultural Projects, Risks

JEL Codes: D62, Q15, Q53

#### **INTRODUCTION**

#### Importance of Agriculture, Sustainability and Climate Change Concerns

Agriculture is a major and integral component of the Indianeconomy with a contribution of about 18% to the GDP of the country and employment to over 55 per cent of the population (Source:Economic Survey, Odisha 2017-18).

Odisha, the south-eastern state of India has 47% of its population living under poverty and 85% of the state's population live in villages (Source:EAS, TRIPTI, 2007). Agriculture is the state's dominant sector with a contribution of nearly 20 per cent to the Net State Domestic Product (NSDP). About 73 per cent of total main workers are engaged in agriculture including 44.3 per cent cultivators and 28.7 per cent agricultural laborer (Source: Economic Survey, Odisha 2017- 18).

The performance of a crop is directly related to the climate of the concerned area. During the last decade the changes in global climate have a significant effect on agriculture.

Climate change has beenalso affecting people around the world, threatening the basic elements of life – access to water, food, health and use of land, and the basic environment. In the case of a developing country like India and her states, climate change is an additional burden because ecological and socio-economic systems are already facing pressures from rapid population, industrialization and economic development. The climate of Odisha is a tropical one, characterized by high temperature, high humidity, medium to high rainfall and short and mild winters. On the basis of climate type, Orissa has been divided into ten agro-climatic zone. The normal rainfall of the state is 1451.2 mm. About 75% to 80% of rainfall is received from June to September, which is south west monsoon season. Floods, droughts and cyclones occur almost every year varying intensity (Source:State of Environment, Odisha).

There is a close, complex and dynamic relationship between natural resources used in agriculture and the environment. The extent of the environmental impacts depends on agricultural structures, the amount of land and other resources used, and the effects of farming practices on ecosystems at the local, regional and national level. There is a general recognition of the need to improve environmental performance of agriculture, through enhancing the beneficial, and reducing the harmful environmental effects, and to ensure the sustainability of resource use (Kullaj, 2005). Agriculture, as an economic activity, is not neutral in relation to natural environment because, it is directly or indirectly linked with environment. The main environmental impacts of agriculture projects may be based onparameters such asSoil quality (erosion, desertification, compaction, pollution, stepping, nutrient supply, moisture balance, salinity); Air quality(pollution, greenhouse gas, carbon dioxide); Land quantity (ecological

management of agricultural land); Water quality (nutrient, pesticide, sediment runoff and leaching, salinity) and Water quantity (irrigation consumption, use efficiency, water retention capacity, flood prevention) (Kullaj,2005).

Besides agricultural activities a number of other projects and developments impact the environment. In states like Odisha with mineral resources, this is a natural phenomenon. In the last 50-60 years the industrial development has centered on mining activities and industries for mineral processing and manufacturing goods based on minerals are being set up. The major industries that have come up in Orissa are the iron and steel, sponge iron plants, aluminum industries, thermal power and other related industries. They have created the problem of air pollution by fly ash and red mud and water pollution by release of effluent into the rivers.

Odisha has a total forest cover spread over 51,345 Sq. km, which is about 32.98% of the total geographicarea of the state (Source-ISFR, Odisha 2017). Forests with canopy density more than 40% comprises 18% and the open forests with canopy density less than 40% accounts for about 13% of the total forest area. This is one positive factor that will counter the negative implications of other sectors including that of agriculture development on environment.

Climate change has the potential to deepen the poverty along with derailing the current growth strategy in Odisha. Continuous variation in the climate will probably alter the sectoral growth, including the ability of the rural poor to engage in farm and non-farm activities. The direct effects of extreme climate-induced events could include loss of life, livelihoods, assets and infrastructure. All of these could affect the state's economic growth and nullify the effectiveness of macro-economic policies and pro poor initiatives. Some of the specific climatic risks for Odisha are:

- Highly variable rainfall, leaving people with two peak periods of food scarcity,
- Dry and drought spells at an interval of every two years in Western Odisha,
- Heat waves in summer and flash floods during rainy season.
- Intense floods and cyclones in coastal areas.

#### **Environmental Implications of Development projects**

Environment is living things and what is around them. It can be living or non-living things such as human, soil, mineral, plant, animal, water and air. It includes physical, chemical and other natural forces.

The importance of studying the environmental issues lies in the fact that it is a bench mark for sustainable development and can be used to specify the priorities, needs, resources and the ability of the state to establish sustainable development programmes.

An indication of some of the major environmental issues faced in Odisha is given below (Source: EAS, TRIPTI, 2007).

#### **Air Pollution**

There is a major issue of Fly Ash, Red Mud and Hazardous Waste disposal in Orissa. Some13 million tonnes of fly ash and 1-3 million tonnes of red mud are generated per year. Besides, 81,000 tonnes of Hazardous Wastes are also generated from various industries.

## Water Pollution

The two major rivers of the State namely Brahmani and Mahanadi are polluted due to industrial and municipal effluents. At Paradeep, the Mahanadi river system receives around 5,280 KLD (Kilo Liters per Day) of effluent per day with BOD (Biological Oxygen Demand) load of 15 Kg/day, COD (Chemical Oxygen Demand) load of 35 Kg/day and Oil and Grease of 75 Kg/day. Odisha has 103 Urban Local Bodies. None of these urban and small town centers have municipal solid waste treatment and management facilities (Source: State of Environment Orissa, 2006).

## Salinity Hazard

A considerable area of about 5 Lakh hectares of the coastal alluvial tract suffers salinity hazard. Agricultural development projects are the ones that aim at reducing the rural poverty by improving and increasing agricultural production through a community-based approach in designing and implementing components which directly impact the lives of the poor in the particular province or district (Source: The World Bank).

It is in this context that a study on the environmental implications of agricultural development in the state of Odisha was undertaken with the following objectives:

- 1. To identify the potential viable agriculture projects in selected districts of Odisha.
- 2. To identify the positive and negative externalities associated with the selected agricultural projects.

3. To suggest suitable mitigation strategies.

#### **METHODOLOGY**

The study used data from secondary sources through review of literature. Functional analysis has been done by mapping of the different inputs and few projects (irrigation) according to the environment of Odisha. The information on key issues were also derived from FGDs held with various community groups, stakeholder interactions, and interviews with key informants. The data was compiled and analyzed with appropriate tools for further interpretations.

#### **RESULTS AND DISSCUSSION**

The analysis presented in this paper is based on information and data from a series of sub- studies. To fulfill the above listed objectives the following analysis were carried out.

The agricultural landscape of any region is defined more by the climate specifically the rainfall, supported by the irrigation, the soil types and the forest cover. Accordingly these situations have been described and analyzed in this section.

#### Rainfall

The average annual rainfall of the state is above the national average (1100 mm) with over 1300 mm. However, the state is often faced with natural calamities (Table 1). Among the frequently occurring calamities, floods and cyclone which together occurred for 60 per cent of the years in the 53 years since 1961.

| S.No. | Type of Calamities | Frequency (in 53 yrs) | % Frequency |
|-------|--------------------|-----------------------|-------------|
| 1     | Severe Drought     | 8                     | 15.1        |
| 2     | Moderate Drought   | 11                    | 20.8        |
| 3     | Floods             | 25                    | 47.2        |
| 4     | Cyclones           | 7                     | 13.2        |
| 5     | Tornadoes          | 2                     | 3.8         |
| 6     | Hailstorms         | 1                     | 1.9         |
| 7     | Moisture Stress    | 5                     | 9.4         |

 Table1. Frequency of Natural Calamities in Odisha state (1961 - 2014)

Source: Author's own compilation

#### Irrigation

Of the overall cultivated area of 61.80 lakh ha of gross cultivated area in the state, about 54% is under irrigation with almost 45 per cent under canal irrigations (major/ medium projects) with the rest under minor irrigation sources. The irrigation potential created from all sources till Kharif'2013 is 39.39 lakh ha & in Rabi'2013-14 is 16.52 lakh ha. The gross irrigated cropped

area is 35.21 lakh ha, which is about 70.5% of the potential created. There is a constant endeavor to enhance the irrigation capacity in the state.



Figure 1. Growth Rate of Irrigation Potential Created over the Years

The irrigation potential utilized since 1991 has increased from 23.14 to 35.21 lakh ha by 2013- 14 with almost two thirds in kharif and the rest in rabi season. This showed a very marginal CAGR of 1.67 %. Besides, the irrigation potential created through government sector mainly through flow system, private irrigation sources are also being developed. The number of shallow tube wells, bore wells, dug wells and surface lifts installed since 1996-97 till 2013-14 is indicated below (Table 2).

| Table 2. Number of Shallow   | 7 Tube Wells, Bo | re Wells, Dug Wells | and Surface Lifts Installed. |
|------------------------------|------------------|---------------------|------------------------------|
| i able 2. i famber of bhanon | Tube wens, bu    | c mens, bug mens    | and Durface Lifts instance.  |

| Items             | Nos. installed<br>till 2012-13 | Nos. installed<br>during 2013-14 | TOTAL till<br>2013-14 | Nos. installed<br>during 2014-15<br>till 30.09.2014 |
|-------------------|--------------------------------|----------------------------------|-----------------------|-----------------------------------------------------|
| Shallow Tube Well | 144966                         | 5148                             | 150114                | 1669                                                |
| Bore Well         | 30453                          | 6511                             | 36964                 | 2368                                                |
| Dug well          | 10653                          | 1634                             | 12287                 | 488                                                 |
| Surface lift      | 933                            | 04                               | 937                   | 1                                                   |
| Total             | 187005                         | 13297                            | 200302                | 4526                                                |

Source: Status of Agriculture in Odisha, 2014-15

| Sl No.  | Type of Project                                | No. of<br>Projects | Cumulative Pote<br>('000 |       |
|---------|------------------------------------------------|--------------------|--------------------------|-------|
|         |                                                | -                  | Kharif                   | Rabi  |
| А       | Completed Projects                             |                    |                          |       |
| 1       | Major                                          | 10                 | 937                      | 476   |
| 2       | Medium                                         | 49                 | 280                      | 100   |
| 3       | Creek                                          | 16                 | 24                       | 0.1   |
|         | Total                                          |                    | 1241                     | 576.1 |
| В       | <b>Ongoing Projects</b>                        |                    |                          |       |
| 1       | Major                                          | 5                  | 137                      | 68    |
| 2       | Medium                                         | 8                  | 29                       | 7     |
| 3       | Extension, Renovation &<br>Modernization (ERM) | 2                  | 6                        | 0     |
| 4       | Creek                                          | 7                  | 12                       | 0.4   |
|         | Total                                          | 22                 | 184                      | 75.4  |
| Total C | completed & Ongoing Projects                   | 97                 | 1425                     | 652   |
| С       | Mega Lift Projects                             |                    |                          |       |
| 1       | Cluster No-XIV                                 | 12                 | 14.3                     | 0     |
| 2       | Cluster No-III                                 | 14                 | 16.82                    | 0     |
| 3       | Cluster No-XV                                  | 15                 | 21.15                    | 0     |
| 4       | Cluster No-II                                  | 2                  | 1.4                      | 0     |
|         | Total                                          | 43                 | 53.67                    | 0     |
|         | Total Mega Lift Projects                       | 43                 | 53.67                    | 0     |

#### Table 3. List of Completed and Ongoing Irrigation Projects in Odisha

Source: Department of Water Resources, Odisha

Additional 295.4 thousand hectares of agriculture land to be brought under irrigation through various sources. (Major & Medium-34.00Th.Ha., Minor-31.54 Th.Ha., Megalift-65.00 Th.Ha., OLIC-139.86 Th.Ha. & Agriculture Dept.-25.00 Th.Ha.) (Source- Activity report dept of water resources Odisha, 2017-18). At any standards the proportion of irrigation is higher in Odisha compared to national average of about 45 per cent indicating that the intensity of irrigation is more oriented towards area expansion and development focused. Further, the effort on minor and individual farmers' oriented interventions meant that the environmental implications would be that much lower.

#### Seeds

The seed distribution more specifically of quality seeds is another indicator of development of agriculture sector. The distribution of certified/ quality seeds in the state was to the tune of 594728 quintals, of which paddy alone accounted for almost three fourth of the quantity (Table 4). The area covered by such quality seeds increased from mere 2 to 13 per cent in the last 35 years. One negative implication of use of seeds that are not guaranteed with quality means lot of area is used for producing same of production that too under anaerobic conditions emitting lot of carbon emissions during cultivation.

| Year    | Distribution of Certified/ Quality Seeds(quintals) |                         |        |  |  |
|---------|----------------------------------------------------|-------------------------|--------|--|--|
| i cui   | Paddy                                              | <b>Other Crop Seeds</b> | Total  |  |  |
| 1980-81 | 103324                                             | 25844                   | 129168 |  |  |
| 1990-91 | 44770                                              | 55230                   | 100000 |  |  |
| 2000-01 | 220135                                             | 71814                   | 291949 |  |  |
| 2005-06 | 160223                                             | 71664                   | 231887 |  |  |
| 2013-14 | 548710                                             | 46018                   | 594728 |  |  |

 Table 4. Quantity of Quality Seeds Distributed (in quintals)

(Source: Status of Agriculture, Odisha, 2014-15)

#### Fertilizer

The consumption of fertilizer in the state has taken great strides from a meager 0.76 kg/ ha during 1961-62 to 63.78 ha during 2014-15. However, the consumption is much below the national average and thus can be raised to a higher level with availability of the materials in required quantities at affordable price. Fertilizer consumption of the state from 1961-62 to 2014-15 is indicated below (Table 5)

| Table 5. Fertilizer Const | umption over the | Years in Odisha |
|---------------------------|------------------|-----------------|
|---------------------------|------------------|-----------------|

|         | Fertilizer c | Fertilizer consumption in nutrient basis in '000 MT |       |        |           |  |
|---------|--------------|-----------------------------------------------------|-------|--------|-----------|--|
| Year    | N            | Р                                                   | K     | Total  | in Kg./ha |  |
| 1961-62 | 4.38         | 0.49                                                | -     | 4.87   | 0.76      |  |
| 1971-72 | 37.43        | 8.38                                                | 4.01  | 49.82  | 7.25      |  |
| 1981-82 | 54.16        | 17.92                                               | 9.91  | 81.99  | 9.68      |  |
| 1991-92 | 126.22       | 41.52                                               | 28.29 | 196.03 | 19.96     |  |
| 2001-02 | 221.17       | 71.95                                               | 51.55 | 344.67 | 41.00     |  |
| 2002-03 | 185.41       | 62.86                                               | 42.29 | 290.56 | 39.00     |  |
| 2003-04 | 210.07       | 66.64                                               | 49.50 | 326.21 | 39.00     |  |
| 2004-05 | 223.54       | 77.99                                               | 53.77 | 355.31 | 43.00     |  |

| 2005-06 | 243.21 | 91.05  | 60.62 | 294.88 | 46.00 |
|---------|--------|--------|-------|--------|-------|
| 2006-07 | 256.54 | 92.77  | 53.57 | 402.88 | 47.00 |
| 2007-08 | 273.63 | 121.48 | 67.21 | 462.32 | 52.10 |
| 2008-09 | 297.77 | 147.93 | 89.17 | 534.87 | 61.50 |
| 2009-10 | 292.29 | 148.59 | 78.46 | 519.34 | 59.78 |
| 2010-11 | 294.72 | 153.97 | 89.16 | 537.85 | 62.85 |
| 2011-12 | 323.41 | 135.48 | 55.80 | 514.69 | 62.85 |
| 2012-13 | 315.04 | 124.19 | 50.97 | 490.20 | 58.74 |
| 2013-14 | 312.99 | 117.70 | 56.45 | 487.14 | 57.11 |
| 2014-15 | 324.91 | 143.76 | 75.42 | 544.09 | 63.78 |

Source: Agricultural Statistics at a Glance 2014, Govt. of India



Figure 2. Fertilizer Use in Some States vs. Odisha (kg/ha)

The average consumption of fertilizer in Odisha is much below the national average. It stands at the 16<sup>th</sup> position all over India in terms in fertilizer use. This is in one way advantageous as the state can become by default organic in many crops and districts. On the other handwe can argue that the full potential of the soil and crop productivity is not achieved due to less consumption. Odisha can have better growth in terms of crop yield and increase in soil health by the use of more fertilizers.

#### Plant Protection (Technical Grade in MT):

|         |          | Total Pesticides consumed |         |                              |  |
|---------|----------|---------------------------|---------|------------------------------|--|
| Year    | Chemical | <b>Bio-pesticides</b>     | Total   | Consumption<br>(gms of a.i.) |  |
| 2000-01 | 780.55   | 225.00                    | 1005.55 | 157.00                       |  |
| 2001-02 | 757.00   | 261.00                    | 1018.00 | 159.00                       |  |
| 2002-03 | 748.00   | 280.00                    | 1028.00 | 139.00                       |  |
| 2003-04 | 710.90   | 317.60                    | 1028.50 | 138.00                       |  |
| 2004-05 | 669.00   | 318.00                    | 987.00  | 148.68                       |  |
| 2005-06 | 720.00   | 319.00                    | 1039.00 | 138.53                       |  |
| 2006-07 | 812.00   | 343.00                    | 1155.00 | 148.94                       |  |
| 2007-08 | 744.25   | 345.00                    | 1089.25 | 148.34                       |  |
| 2008-09 | 810.75   | 345.00                    | 1155.75 | 149.00                       |  |
| 2009-10 | 921.24   | 297.19                    | 1218.43 | 141.00                       |  |
| 2010-11 | 870.50   | 305.00                    | 1175.50 | 159.00                       |  |
| 2011-12 | 844.00   | 311.00                    | 1155.00 | 148.00                       |  |
| 2012-13 | 928.50   | 277.00                    | 1205.50 | 158.00                       |  |
| 2013-14 | 904.00   | 315.00                    | 1219.00 | 144.00                       |  |

Table 6. Consumption of Pesticides in Odisha

Source: Status of Agriculture in Odisha, 2014-15

There has been an increase in the use of chemical pesticides over the decade though the rate of increase is comparatively slower with the advent of bio-pesticides. Nevertheless, it has few major negative side-effects on the environment e.g. toxicity of leaves and fruits, and also giving way to air and water pollution. Emphasis must be laid on Integrated Pest Management (IPM) with more use of bio-pesticides for curbing the environmental pollution, thereby even reducing the deaths related to pesticide poisoning. Adoption of Integrated Pest Management (IPM), emphasizing conservation and augmentation of natural enemies of pest such as parasites, predators and pathogens for control of harmful insects and diseases of crops, should be given due thrust for increasing the crop productivity.

## (v) Farm Mechanization

Farm mechanization has become highly essential for timely operation of agricultural activities leading to increase in production and productivity besides reduction in drudgery of labour associated with farm activities. It also enables efficient utilization of agricultural inputs and reduces the cost of production. The Government has been encouraging the farmers to adopt improved farm machinery & equipment by providing financial assistance in form of subsidies and credit facility. Besides, the Agriculture Directorate is equipped with a proto-type Development Center (Odisha Farm Machinery Research and Development Center, Bhubaneswar) which designs, and manufactures popular implements for supply to

farmers. It also indulges in training, testing and modifying the equipments as per the farmer's requirement.

Because of the awareness generation programme taken up by the Department through demonstration and farmers awareness trainings, mechanization has picked up in the State and there is a great demand for tractor, power tiller, paddy reaper, and other power driven/ selfpropelled equipments. Similarly, small manually operated/ bullock drawn implements are also being increasingly used by the farmers of hilly and tribal areas. The farm power input touched 1.405 kWH/ hect. by the end of 2011-12 and it has been targeted to increase 2.00kWH/ha by the end of 12<sup>th</sup>Plan period.



Figure 3. Farm Power Inputs(Kwh/ha)

Source: -Status of Agriculture in Odisha, 2014-15

| Year    | Nur      | nbers         | Total (Tractors +      |
|---------|----------|---------------|------------------------|
|         | Tractors | Power Tillers | <b>Power Tillers</b> ) |
| 1992-93 | 76       |               | 76                     |
| 1993-94 | 152      |               | 152                    |
| 1994-95 | 273      |               | 273                    |
| 1995-96 | 103      | 76            | 179                    |
| 1996-97 | 512      | 345           | 857                    |
| 1997-98 | 774      | 393           | 1167                   |
| 1998-99 | 303      | 748           | 1051                   |
| 1999-00 | 143      | 783           | 926                    |
| 2000-01 | 168      | 775           | 943                    |
| 2001-02 | 102      | 822           | 924                    |
| 2002-03 | 251      | 1242          | 1493                   |
| 2003-04 | 585      | 1734          | 2319                   |
| 2004-05 | 788      | 2125          | 2913                   |
| 2005-06 | 800      | 1631          | 2431                   |
| 2006-07 | 1247     | 2974          | 4221                   |
| 2007-08 | 705      | 3364          | 4069                   |
| 2008-09 | 1500     | 5280          | 6780                   |
| 2009-10 | 2325     | 7615          | 9940                   |
| 2010-11 | 4750     | 12742         | 17492                  |
| 2011-12 | 5317     | 11257         | 16574                  |
| 2012-13 | 5977     | 12503         | 18480                  |
| 2013-14 | 4534     | 13032         | 17566                  |

# Table 7: The trend of tractors & power tiller popularized in Odisha

Source: Status of Agriculture in Odisha, 2014-15; Author's own compilation

# Major Impacts of Few Development Activities on the Environment

## Clearing of Forests and land resettlements

Extinction of rare species of flora and fauna, creation of condition for mosquito breeding giving way to infectious diseases such as malaria, dengue, etc.

# Shifting cultivation in upland agriculture

Soil erosion occurs in upland areas, soil fertility declines due to shorter cultivation cycle, which is done due to population pressure, flooding of low land areas. The problems could be mitigated by terraced cultivation.

## Agro industries

Air pollution occurs due to burning of bagasse as fuel in sugar mills, large amount of highly polluting organic wastes, surface water pollution.

# Introduction of new varieties of cereals

Reduction in the genetic diversity of traditional monoculture that results in instability and danger of multiplication of local strains of fungus, bacteria or virus on new variety.

# Use of pesticides

Organisms develop resistance so new control methods are needed (e.g. in malaria, widespread use of Dieldrin as a prophylactic agent against pests of oil palms made the problem worse), creation of complex and widespread environment problems. The pesticides used in agriculture at times go into food chain or in water bodies which may result in health hazards.

## Timber extraction

It is highly detrimental as indiscriminate timber extraction degrades land, destroys surface soil, and reduces the production potential of future forests.

Framework of Environment Statistics and their main Characteristics including its Development.

| Issues                                                                         | Socio-economic<br>Activities or<br>Events                                                                                                                                                                | Impacts and Effects                                                                                                                                         | Responses to<br>impacts                                                                                              | Inventories,<br>Stocks,<br>Background<br>Conditions                                                                                                   |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Economic                                                                       | Real GDP per<br>capita growth<br>rate                                                                                                                                                                    | EDP/EVA per capita                                                                                                                                          | Environmental<br>protection<br>expenditure as %<br>of GDP                                                            |                                                                                                                                                       |
| Issues                                                                         | Production and<br>consumption<br>patterns<br>Investment share<br>in GDP                                                                                                                                  | Capital<br>accumulation<br>(environmentally<br>adjusted)                                                                                                    | Environmental<br>taxes and<br>subsidies as % of<br>govt. revenue                                                     | Produced<br>capital stock                                                                                                                             |
| Social/Demogra<br>phic                                                         | Population<br>growth Rate,<br>Population<br>density, Urban/<br>rural migration<br>rate                                                                                                                   | % of urban<br>Population exposed<br>to concentrations of<br>SO2 particulates,<br>Ozone, CO &Pb                                                              | Pop. Living in<br>Poverty. Adult<br>literacy rate<br>Combined<br>(Primary &<br>secondary) school<br>enrollment ratio | Life expectancy<br>at birth Females<br>per 100 males in<br>secondary<br>school                                                                        |
| Issues                                                                         | Calorie supply per capita                                                                                                                                                                                | Infant mortality<br>rate<br>Incidence of<br>environmental<br>related diseases                                                                               |                                                                                                                      |                                                                                                                                                       |
| NATURAL<br>RESOURCES<br>Biological<br>resources<br>Mineral energy<br>Resources | Annual round<br>Wood<br>production<br>Fuelwood<br>consumption per<br>capita<br>Catches of<br>marine species<br>Annual energy<br>consumption per<br>capita<br>Extraction of<br>other mineral<br>resources | Deforestation<br>rate<br>Threatened,<br>extinct species<br>Depletion of<br>mineral resources<br>(% of proven<br>reserves)<br>Lifetime of<br>proven reserves | Reforestation rate<br>Protected forest<br>area as % of<br>total land area                                            | Forest inventory<br>Ecosystems<br>inventory<br>Fauna and flora<br>inventory Fish<br>stocks<br>Proven mineral<br>reserves<br>Proven energy<br>reserves |
| AIR/CLIMATE                                                                    | Emissions of<br>CO <sub>2</sub> ,SO <sub>2</sub> and<br>NOx<br>Consumption of                                                                                                                            | Ambient<br>concentrations of<br>CO, SO2, NOx O3<br>and TSP in urban                                                                                         | Expenditure on<br>air pollution<br>abatement<br>Reduction in                                                         | Weather and<br>climate<br>conditions                                                                                                                  |

|              | Ozone depleting    | areas               | Consumption of     |                 |
|--------------|--------------------|---------------------|--------------------|-----------------|
|              | substances         | Air quality index   | substances         |                 |
|              | substances         | 1 5                 | and emissions      |                 |
| LAND/SOIL    | Land use           | Area affected by    | Protected area as  | Arable land per |
|              | change             | soil erosion        | % of total land    | capita          |
|              | Livestock per      | Son crosion         | area               | cupitu          |
|              | $km^2$ of arid and |                     | ureu               |                 |
|              | semiarid lands     | Land affected by    |                    |                 |
|              | Use of fertilizers | desertification     |                    |                 |
|              | Use of             | Area affected by    |                    |                 |
|              | agricultural       | salinization and    |                    |                 |
|              | pesticides         | water logging       |                    |                 |
| WATER        | Industrial,        | Concentration of    | Waste water        | Groundwater     |
| Fresh water  | agricultural and   | lead, cadmium,      | treatment, total & | Reserves        |
| Resources    | municipal          | mercury and         | by type of         | 1/2321 1/28     |
| 100001000    | discharges         | pesticides in fresh | treatment (%       |                 |
|              | directly into      | water bodies.       | of population      |                 |
|              | freshwater         | Concentration of    | served)            |                 |
|              | bodies             | fecal coliform in   | Access to safe     |                 |
|              | Annual             | fresh water bodies. |                    |                 |
|              | withdrawals of     |                     | drinking water (%  |                 |
|              |                    | Acidification of    | of population      |                 |
|              | ground and         | fresh water         | served)            |                 |
|              | surface water      | Bodies.             |                    |                 |
|              | Domestic           |                     |                    |                 |
|              | consumption of     |                     |                    |                 |
|              | water per capita   |                     |                    |                 |
| Marine water | Industrial,        | BOD and COD in      |                    |                 |
| Resources    | agricultural       | fresh water bodies  |                    |                 |
|              | water use per      | Water quality index |                    |                 |
|              | GDP                | by fresh water      |                    |                 |
|              | Industrial,        | bodies              |                    |                 |
|              | agricultural and   | Deviation in stock  |                    |                 |
|              | municipal          | from maximum        |                    |                 |
|              | discharges         | sustainable         |                    |                 |
|              | directly into      | yield of marine     |                    |                 |
|              | marine water       | species             |                    |                 |
|              | bodies             | Loading of N & P    |                    |                 |
|              | Discharges of oil  | in coastal waters   |                    |                 |
|              | into               |                     |                    |                 |
|              | coastal waters     |                     |                    |                 |
| WASTE        | Municipal waste    | Area of land        | Expenditure on     |                 |
|              | disposal           | contaminated        | waste              |                 |
|              | Generation of      | by toxic waste      | collection and     |                 |
|              | hazardous waste    | -                   | treatment          |                 |
|              | Imports &          |                     | Waste recycling    |                 |
| 1            | exports of         |                     |                    |                 |

|            | hazardous wastes |                        |                  |                |
|------------|------------------|------------------------|------------------|----------------|
| HUMAN      | Rate of growth   | Area and               | Expenditure on   | Stock of       |
| SETTLEMENT | of urban         | population in          | Low cost housing | shelter and    |
| S          | population       | marginal               |                  | infrastructure |
|            | % of population  | settlements            |                  |                |
|            | in urban areas   | Shelter index.         |                  |                |
|            | Motor vehicles   | % of population        |                  |                |
|            | in use per       | with                   |                  |                |
|            | 1000 habitants   | sanitary services      |                  |                |
| NATURAL    | Frequency of     | Cost number            | Expenditure on   | Human          |
| DISASTERS  | natural          | injuries               | disaster         | settlements    |
|            | disasters        | and fatalities related | prevention       | vulnerable     |
|            |                  | to                     | mitigation       | to natural     |
|            |                  | natural disasters      |                  | disasters      |

Source: Compendium of Environment Statistics, Odisha, 2016

# Important Livelihood Activities of Selected Districts in Odisha and Related Environmental Implications

| District  | Important Livelihoods                                                                                                                                                                                                                                                           | Important<br>environmental issues<br>pertaining to<br>livelihoods                                                                                                                                                                                                                 | Other major<br>environmental issues |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1. Puri   | <ol> <li>Fish and Fisheries</li> <li>Tourism</li> <li>Cottage Industry         <ul> <li>(PipliChandua, Artisan Wood, Stone Carving &amp;Patta Painting)</li> <li>Agriculture</li> <li>Horticulture (Coconut, Cashew nut, Betel leaf, Mango &amp; Banana)</li> </ul> </li> </ol> | <ol> <li>Fishing in Chilika<br/>area and coast</li> <li>Prawn gheries</li> <li>Fish &amp; prawn<br/>processing</li> <li>Effluents and<br/>sewage waste<br/>discharged to sea</li> <li>Salinity in<br/>groundwater</li> <li>Presence of<br/>cultural heritage<br/>sites</li> </ol> |                                     |
| 2. Khurda | <ol> <li>Forest based cottage<br/>industry (Wood and<br/>Bamboo)</li> <li>Fish and fisheries</li> <li>Horticulture (Coconut,<br/>Cashew, Mango &amp;<br/>Banana)</li> <li>Agriculture</li> </ol>                                                                                | <ol> <li>Fishing in Chilika<br/>area and coast</li> <li>Prawn gheries</li> <li>Fish &amp; prawn<br/>processing</li> <li>Salinity in<br/>groundwater</li> <li>Quarry mining</li> <li>Presence of</li> </ol>                                                                        |                                     |

|                  |                                                                                                                                                                                          | cultural heritage<br>sites                                                                                                                                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Jagatsinghpur | <ul> <li>10. Fish and fisheries</li> <li>11. Agriculture</li> <li>12. Horticulture (Betel leaf,<br/>Bamboo, Mango,<br/>Cashew &amp; Banana)</li> <li>13. Industry</li> </ul>             | <ol> <li>Fishing on coast</li> <li>Prawn gheries</li> <li>Fish &amp; prawn<br/>processing</li> <li>Salinity in<br/>groundwater</li> <li>Industrial pollution at<br/>Paradeep</li> </ol>                                                                |
| 4. Kendrapara    | <ul> <li>14. Fish and fisheries</li> <li>15. Agriculture</li> <li>16. Mangrove based<br/>livelihood</li> <li>17. Horticulture (Betel leaf,<br/>Banana)</li> </ul>                        | <ol> <li>Fishing on coast<br/>and Bhitarkanika<br/>coast</li> <li>Extraction of<br/>forest produce<br/>from Bhitarkanika</li> <li>Prawn gheries</li> <li>Salinity in<br/>groundwater</li> </ol>                                                        |
| 5. Bhadrak       | <ul> <li>18. Fish and fisheries</li> <li>19. Industrial Mining</li> <li>20. Mangrove based<br/>livelihood</li> <li>21. Betel leaf, banana,<br/>mango</li> <li>22. Agriculture</li> </ul> | <ol> <li>Fishing in Chilika<br/>area and coast</li> <li>Prawn gheries</li> <li>Fish &amp; prawn<br/>processing</li> <li>Intrusion in<br/>habitat of salt<br/>water crocodiles</li> <li>Salinity in<br/>groundwater</li> <li>Chromite mining</li> </ol> |
| 6. Balasore      | <ul> <li>23. Fish and fisheries</li> <li>24. Tourism</li> <li>25. Industrial</li> <li>26. Horticulture (betel leaf, cashew, mangrove, coconut)</li> <li>27. Agriculture</li> </ul>       | <ol> <li>Fishing in Chilika<br/>area and coast</li> <li>Prawn gheries</li> <li>Fish &amp; prawn<br/>processing</li> <li>Salinity in<br/>groundwater</li> <li>Industrial pollution<br/>source at Balasore<br/>Town.</li> </ol>                          |
| 7. Cuttack       | <ul> <li>28. Cottage industries<br/>(Silver filigree, Textile)</li> <li>29. Fish and fisheries,<br/>Aquaculture</li> <li>30. Agriculture, livestock</li> </ul>                           | <ol> <li>Fishing in rivers,<br/>Ansupa lake</li> <li>Pressure on forest<br/>bamboo</li> <li>Municipal<br/>effluents<br/>discharged to<br/>rivers</li> </ol>                                                                                            |
| 8. Jajpur        | <ul><li>31. Industrial</li><li>32. Fish and fisheries</li><li>33. Agricultural, livestock</li></ul>                                                                                      | 1. Presence of<br>cultural heritage<br>sitesChromite mining<br>pollution and<br>industrial discharges.                                                                                                                                                 |

|              |                                  | 2. Industrial                         |    |
|--------------|----------------------------------|---------------------------------------|----|
|              |                                  | effluents and                         |    |
|              |                                  | emissions                             |    |
|              |                                  | 3. Chromite mining                    |    |
| 9. Angul     | 34. Forest based cottage         | 1. Industrial Fluoride pollution i    | n  |
|              | industries.                      | effluents and ground water            |    |
|              | 35. Horticulture (litchi,        | emissions                             |    |
|              | mango, orange)                   | 2. Coal mining                        |    |
|              | 36. Agriculture                  | 3. Fly ash                            |    |
|              | 37. Coal based industries        | 4. Fishing in                         |    |
|              |                                  | Satkosia gorge                        |    |
|              |                                  | protected natural                     |    |
|              |                                  | habitat                               |    |
|              |                                  | 5. Reserve forests –                  |    |
|              |                                  | extraction of                         |    |
|              |                                  | forest produce                        |    |
| 10. Nayagarh | 38. Forest based cottage         | 1. Fishing in In some block           |    |
| , ,          | industry                         | Satkosia gorge fluoride pollution d   | ne |
|              | 39. Horticulture (mango,         | protected natural to soil and industr |    |
|              | coconut, cashew)                 | habitat                               | 5  |
|              | 40. Agriculture                  | 2. Reserve forests –                  |    |
|              | 40. Agriculture<br>41. Livestock | extraction of                         |    |
|              | 41. LIVESLOCK                    |                                       |    |
|              |                                  | forest produce                        |    |
|              |                                  | 3. Presence of                        |    |
|              |                                  | cultural heritage                     |    |
| C            |                                  | sites                                 |    |

Source: Environmental Impact Assessment Study of TRIPTI, 2007

# Assessment Criteria for determining extent of pressure on environment

| Extent of strain  | Criteria                                                                                                                                                                                                                                                                                                                       | <b>Remarks</b> / Examples                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| on<br>environment |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |
| Low               | <ul> <li>All products as well as by-products are bio-degradable</li> <li>The process does not involve extensive or unsustainable use of natural resources such as groundwater, forest, biomass, etc.</li> <li>Non-biodegradable substances could be produced, but they are readily re-usable and easily recyclable.</li> </ul> | Tailoring, small tea stalls,<br>etc.<br>Activities in which only<br>woody biomass based fuels<br>are used                                        |
| Medium            | <ul> <li>Non-biodegradable and non-hazardous<br/>substances are produced in small or<br/>insignificant quantities. Re-cycling of<br/>these is possible - at least a major part</li> <li>Bio-degradable substances with high</li> </ul>                                                                                         | E.g. Plastic materials or<br>Groundwater containing<br>fluoride, iron, etc. but these<br>are treatable BOD3 of the<br>effluent not exceeding 100 |

|      | <ul> <li>organic loading are produced</li> <li>Natural resources, if used in significant quantities, are replenishable</li> <li>Fossil fuels could be used albeit in small quantities</li> </ul>                                                                                                                                                                                                 | mg/litres4<br>E.g Tractors, diesel<br>irrigation pumps used<br>seasonally                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| High | <ul> <li>Non-biodegradable, hazardous and toxic substances that create severe and adverse environmental impacts are produced in significant quantities</li> <li>Sustainable re-cycling or disposal of these is not easily possible</li> <li>Natural resources are used in significant quantities which are not sustainable</li> <li>Fossil fuels are the routinely used energy source</li> </ul> | E.g Chemical fertilizers and<br>pesticides<br>E.g Large brick kilns<br>E.g Furnaces & boilers<br>using coal |

Source: Environmental Impact Assessment Study of TRIPTI, 2007

# Environmental risk management

| Sector       | Activities likely<br>to<br>affect<br>environment                                                                                                             | Environmental<br>Issues<br>and Risks                                                                                                                                                                                 | Mitigation Measures                                                                                                                                                                                                                                                                                          | Applicable<br>Legislations                                                                                                                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Agriculture  | <ul> <li>Irrigation</li> <li>Crop<br/>Residue<br/>Burning</li> <li>Pesticide<br/>usage</li> <li>Fertilizer<br/>usage</li> <li>Use of<br/>plastics</li> </ul> | <ul> <li>Ground water<br/>depletion</li> <li>Methane<br/>emissions<br/>(due to crop<br/>surplus<br/>residue)</li> <li>Groundwater<br/>contamination<br/>due to<br/>pesticide and<br/>fertilizer<br/>usage</li> </ul> | <ul> <li>Promote drip /<br/>sprinkler irrigation<br/>methods</li> <li>Spread awareness<br/>about proper<br/>plastic<br/>disposal</li> <li>Use permissible<br/>classes of<br/>pesticides</li> <li>Dispose off crop<br/>residue as fuel or<br/>manure</li> <li>Residue recycling<br/>and composting</li> </ul> | <ul> <li>The EP act<br/>1986</li> <li>The<br/>Insecticides<br/>Act, 1968</li> <li>The Plastic<br/>sale and usage<br/>rules 1999</li> </ul> |
| Horticulture | <ul> <li>Irrigation</li> <li>Crop<br/>Residue<br/>Burning</li> <li>Pesticide<br/>usage</li> </ul>                                                            | <ul> <li>Ground water<br/>depletion</li> <li>Groundwater<br/>contamination<br/>due to<br/>pesticide and</li> </ul>                                                                                                   | <ul> <li>Promote drip /<br/>sprinkler irrigation<br/>methods</li> <li>Spread awareness<br/>about proper<br/>plastic disposal</li> </ul>                                                                                                                                                                      | <ul> <li>The EP act<br/>1986</li> <li>The<br/>Insecticides<br/>Act, 1968</li> <li>The Plastic</li> </ul>                                   |

| Forest      | usag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                  | fertilizer<br>usage<br>Decomposed<br>organic<br>waste from<br>plant and<br>animal<br>sources in<br>mushroom<br>cultivation | <ul> <li>Dispose off crop<br/>residue as fuel or<br/>manure</li> <li>Residue recycling<br/>and composting</li> <li>Mushroom culture<br/>rooms should be<br/>disinfected</li> <li>Promote use of<br/>hand gloves</li> <li>Mushroom waste<br/>should be<br/>converted to<br/>manure</li> </ul>                                                                                                                                                                                                                                               |                                                                                                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forest      | <ul> <li>NTF</li> <li>Plucileave selection spectors spectors in the selection spector spector spector spector spectors in the selection spector spector spector spector spectors in the selection spector spec</li></ul> | king of<br>es from<br>cted<br>ies<br>ing of<br>iboos &<br>c, broom,<br>king of<br>icinal<br>ts<br>zing of<br>estic | Stunted<br>growth of<br>selected<br>species<br>Resource<br>depletion and<br>effect on bio-<br>diversity                    | <ul> <li>Encourage multi-species use for leaplate making and similar activities</li> <li>Advice against plucking very young leaves</li> <li>Promote setting up of herbal gardens consisting of medicinal plants</li> <li>NTFP extraction should not be beyond permitted 69 minor forest products as permitted</li> <li>Random grazing of cattle on public land or forest area should be permitted only in exceptional cases and that too, subject to permitted areas as allowed by the local DFO at different times of the year</li> </ul> | Act 1927, The<br>Forest<br>(Conservation)<br>Act 1980,<br>amended in<br>1988.<br>• The Wildlife<br>(protection)<br>Act, 1972<br>(forest)<br>• The Orissa<br>Forest Act,<br>1972 |
| Aquaculture | • Fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing in •                                                                                                           | Effluent water                                                                                                             | • Use settling tank,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Orissa                                                                                                                                                                      |

|           | forests and<br>natural<br>habitats<br>Periodic<br>changing of<br>water.<br>Use of salt<br>water from<br>the sea for<br>prawn<br>culture        | may be<br>contaminated<br>with left-over<br>food and dead<br>living material<br>• Land becomes<br>saline and<br>unfit for<br>cultivation | <ul> <li>separators and<br/>proper dosing<br/>before releasing<br/>preservatives to<br/>the outside</li> <li>Prawn culture to<br/>be allowed only<br/>within 2 kilometer<br/>from the sea shore</li> </ul>                                                                                                                                                                                                      | Marine<br>Fishing<br>Regulation Act<br>(OMFRA), 1982                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Livestock | <ul> <li>Grazing of domestic animals</li> <li>Construction of animal shelters</li> <li>Fodder residue wastes</li> <li>Animal wastes</li> </ul> | <ul> <li>Proximity of animal shelter to human habitats</li> <li>Methane emissions</li> <li>Epidemics from diseased animals</li> </ul>    | <ul> <li>Disinfect animal shelters periodically</li> <li>Animal shelters should be at least 100 mtrs away from human habitats</li> <li>U se anaerobic digester and use gas for heating</li> <li>Promote use of hand gloves and masks</li> <li>Periodically monitor animal health and undertake immunization measures</li> <li>Promote stall feeding</li> <li>Grazing as per guidelines issued by DFO</li> </ul> | <ul> <li>The Indian<br/>Forest<br/>Act 1927, The<br/>Forest<br/>(Conservation)<br/>Act 1980,<br/>amended in<br/>1988.</li> <li>The Orissa<br/>Forest Act,<br/>1972</li> </ul> |

Source: Environmental Impact Assessment Study of TRIPTI, 2007

#### CONCLUSION

The integration of agricultural project and environmental policies is a way to sustainable development. In Odisha, the environmental and agricultural policies for project formulation are still disintegrated. The active role of governments and societies in the form of adequate environmental policies is essential to the sustainable development of agriculture. The main problem is associated to the lack of inter-institutional co-operation. This is a special cause of concern at ministerial level, given that the Ministry of Agriculture and Food and the Ministry of Environment are the main institutions defining the policy guidelines on agricultural project and environmental matters. Co-operation between the two ministries is therefore an essential precondition for the formulation of effective policy measures and to avoid agro-environmental impact. The above analysis focuses on those environmental issues that have been identified in this review as being the most important from a policy perspective.

#### References

- Agricultural Statistics at a Glance (2016). Government of India, Ministry of Agriculture and Farmer's Welfare, Department of Agriculture, Cooperation and Farmer's Welfare, Directorate of Economics and Statistics.
- 2. Agricultural Statistics of Odisha (2013-14). Government of Odisha.
- 3. Annual Report for Mega Lift Irrigation Project (FY-2016-17). The Department of Water Resources (DoWR), Government of Odisha.
- Bej A. (2016), "Growth of Agricultural Productivity of Odisha in Post Liberalization Period". *International Journal of Applied Research* (2) (8), pp 500-503.
- 5. Compendium of Environmental Statistics, Odisha (2016). Directorate of Economics and Statistics, Odisha. Planning and Convergence Department, Government of Odisha.
- Dougherty T.C, Hall A.W and Wallingford H.R. "Environmental Impact Assessment of Irrigation and Drainage Projects" (1995). FAO Irrigation and Drainage Paper 53.
- Environmental Impact Assessment Study of Targeted Rural Initiatives for Poverty Termination and Infrastructure (TRIPTI) (2007). Odisha Rural Poverty Reduction Mission.
- 8. ENVIS center of Odisha's State of Environment. Retrieved from http://orienvis.nic.in
- 9. FAO (2015): "Building a Common Vision for Sustainable Food and Agriculture: Principles and Approaches," Food and Agriculture Organization of the United Nations, Rome.

- 10. Himani. "An Analysis of Agriculture Sector in Indian Economy" (2014). *IOSR Journal of Humanities and Social Science* (19) (1). pp 47-55.
- 11. Hussain I. and Bhattarai M. "Comprehensive Assessment of Socio-economic Impacts of Agricultural Water Uses: Concepts, Approaches and Analytical Tools". Comprehensive Assessment of Water Management in Agriculture.
- Impact of Minor Irrigation Projects on Economic Development in Selected Tribal Districts of Jharkhand, Odisha and West Bengal (2004). SER Division, Planning Commission, Government of India, New Delhi.
- 13. Indian State of Forest Report (ISFR), Odisha (2017). pp 260-265.
- Johnston, B.F. and Joh, W. Mellor (1961), "The Role of Agriculture in Economic Development", *The American Economic Review*, California, Stanford University, Vol.Sl, p.566.
- 15. Kullaj E. (June, 2005), Environmental implications of agricultural activities in Albania and sustainable development policy objectives, Est-Ouest, Vol 3(2).
- Mishra P.K, "Socio-Economic Impacts of Climate Change in Odisha: Issues, Challenges and Policy Options." (2017). *Journal of Climate Change*. Vol (3) (1), pp 93-107.
- 17. Morvadi B. (1995). "Contract Farming and Environmental Risks: The Case of Cyprus. *The Journal of Peasant Studies* Vol (23) (1). pp 30-45.
- 18. Odisha at a Glance (2016). Directorate of Economics and Statistics, Odisha.
- 19. Odisha Economic Survey 2017-18. Government of Odisha.
- 20. Rejuvenation of Agriculture. Recommendations of State Level Task Force on Agriculture Development, Department of Agriculture, Odisha.
- 21. Samikshya (2016). *DE & S Journal of Socio-Economic Issues*. Vol (10). Directorate of Economics and Statistics, Odisha.
- 22. Sethi N. "Environmental Implications of Contract Farming: The Case of Cotton Cultivation in Odisha". NIT, Rourkela.

- 23. Sharma V. P. (2007, August). "India's Agrarian Crisis and Small Holder Producer's Participation in New Farm Supply Chain Initiatives: A Case Study of Contract Farming". Indian Institute of Management, Ahmedabad.
- 24. Status of Agriculture in Odisha (2014-15). Directorate of Agriculture and Food Production, Odisha.
- 25. Sudhakar B. (2016, August), "Indian Agriculture-Status, Importance and Role in Economic Development", *International Journal of Scientific Research*, Vol. 5(8).

The World Bank ibrd-ida. Retrieved from <u>http://projects.worldbank.org/P065973/agricultural-development-project?lang=en</u>